Подключение sd карты к микроконтроллеру. Подключение sd карты к микроконтроллеру Подключение карты sd mmc plus

  • 20.07.2023

Скачал исходник.
Вывалились ошибки:
stm32 nok1100 disp.axf: Error: L6218E: Undefined symbol USART_Cmd (referred from main.o).
stm32 nok1100 disp.axf: Error: L6218E: Undefined symbol USART_GetFlagStatus (referred from main.o).
stm32 nok1100 disp.axf: Error: L6218E: Undefined symbol USART_Init (referred from main.o).
stm32 nok1100 disp.axf: Error: L6218E: Undefined symbol USART_ReceiveData (referred from main.o).
stm32 nok1100 disp.axf: Error: L6218E: Undefined symbol USART_SendData (referred from main.o).

Добавил в проект библиотеку для работы с USART — скомпилилось (неплохо было бы все же об этом упомянуть в статье, а?), но карта не инициализируется. Пробовал менять местами выводы MISO и MOSI — результат нулевой…

В проекте использую Standard Peripheral Library + заметно упоминание в тексте и коде об UART’е, думал это само собой влечет использование USART библиотеки. Используемые библиотеки из SPL перечислил. Чуть позже думаю выложить проект целиком.
Есть ли диалог по UART? Что за карта? Она живая? Пробовали ли другие карты?

Ситуация — человек, ни разу ДО того не сталкивавшийся с STM32, находит в интернете Ваши статьи, начинает их читать. Ставит необходимый софт и читает Ваши статьи, последовательно одну за другой, попутно компилируя примеры и проверяя работоспособность на плате STM32VL Discovery (как это у Вас в первой статье сказано). В первом примере все разжевано и разложено по полочкам — какие файлы библиотек куда положить, как структуру проекта оформить, какие опции в свойствах проекта включить/выключить. Все понятно, все прекрасно. Статья для новичков. В статье про подключение SD-карт — полная противоположность, как в той песне — «догадайся, мол, сама…». Мало того — на схеме подключения карты указаны пины процессора, хотя по идее должны быть указаны пины разъемов платы STM32VL Discovery (коли уж повествование началось на ее базе). Думаю, что в статьях должна прослеживаться некая преемственность, раз уж начали опираться с первой статьи на STM32VL Discovery — на ее базе и остальное повествование продолжайте. Так будет намного проще для читающих Ваши статьи.

По УАРТу данные в терминалку падают, в обратную не пробовал.

В процессе написания ответа взял другую карту — не инитится. Поменял местами выводы MISO и MOSI на разъеме дискавери — заработало. Так что в схемке ошибочка наблюдается. Кстати, вот тут http://mycontroller.ru/stm32-sd-card-podklyuchenie/ схема подключения правильная. Подключение карты к плате STM32VL Discovery получается таким: карта пин 1 — PA4, карта пин 2 — PA7, карта пин 5 — PA5, карта пин 7 — PA6. Заработала одна старая карточка (16 Мб) и новая (2 Гб). Старая карточка 8 Мб (раритет, однако 😉) от видеокамеры JVC инициализироваться не захотела.

Пожелание: если не затруднит, описывайте подробнее добавления/изменения в проекте и т.п.. Опытным товарищам это можно и не читать, а неопытным будет ясно и не будут возникать всякие глупые вопросы. 🙂

ЗЫ. Блоки данных пишутся/читаются на/с карты. Спасибо за статью!

Там идет специальная обучающая серия и она пронумерована, вот в ней пытаюсь максимально разжевать. Обычные же статьи могу быть, как обзорные/поверхностные, т.е. самое основное, т.к. материала очень много и всего не упомянуть, а могут быть так же развернутыми. К примеру: эта статья появилась раньше, чем рассказал об UART’е и SPI, не откладывать же материал на потом? да и когда будет этот потом и будет ли вообще?

За замечание насчёт перепутанных выводов спасибо, как выйду на работу с больничного перепроверю (SD карты у меня там остались).

Ответ на пожелание — постараюсь.

В схеме ошибка подтвердилась, вечером информацию обновлю. Спасибо, что заметили.

Спасибо, все отлично работает на F103RB, кингстон сдхц на 4гб скушалась без приреканий. Правда я не сразу заметил, что у меня на плате PA4 — это слейв-селект не для карточки, отладка слегка затянулась))

Вы написали что: SD_init() – инициализация SPI и карты памяти
в случае неудачи возвращает 0.
Разве не наоборот, в случае успешной инициализации, возвращается ноль, иначе - единица?

Ошибся, исправим. Спасибо, что заметили.

А вы пробовали SDHC карту? Она инициализируется но не получается не прочитать не записать, плюс не понятно как ее адресовывать,что то в интернете толком ни чего не нашел

Пробовал SDHC Qumo 8GB — чтение успешно, запись не помню проверял ли. Другие карты не пробовал.

странно, у меня кингстон SDHC на 2гб не пишется и не читается

Ещё может от карточки зависеть, т.е. повезет — не повезет.

Скажите, пожалуйста, а можно ли как-то прочитать данные, записанные на sd карту (без файловой системы), с компьютера. Я имею ввиду использование каких-либо программ для восстановления данных с флешек и пр? Дело в том, что с FatFS постоянно возникают проблемы (с низкоуровневыми функциями, скорее всего). Или чинить их или искать программы.

Такого ПО не искал — на примете нечего нет.

Там в инструкциях к библиотеки есть описание и замечания по её критическим участкам, например, на время каких операций лучше запретить прерывания и прекращение каких приведет к повреждению данных.

Было бы куда интереснее найти/сочинить универсальный драйвер для картридеров которые есть сейчас в любом буке для использования слотов CD/MMC вкачестве универсального SPI интерфейса / программатора, естественно с эмуляцией СОМ порта потому как практически весь софт программаторов работает через СОМ/LPT и практически все железки теперь имеют биос/загрузчики через SPI или общается через него, вот тогда бы вам народ памятник поставил (хотя бы виртуальный).
Удивляюсь почему до сих пор никто такого драйвера не написал, не думаю что это невозможно или архи сложно — «хардвару обходим сфтварой а софтвару — хардварой» , однако сколько не рыл в инете такого драйвера не нашел, а самому писать — слабо.

Хорошая статья! Можно увидеть весь проект с описанной инициализацией карточки?

А к статье разве он не прикреплен?

Хм… думал все основные файлы проекта выложил, вечерком постараюсь добавить.
На счёт сайта — да, печаль, хороший был ресурс, но уже, как с год помер и полноценной копии материалов с того ресурса нигде найти не могу.
Тот сайт, по библиотеке FatFS, на самом деле занимался переводом аналогичного ресурса, библиотеку можете скачать от туда — FatFs — Generic FAT File System Module , плюс там есть ещё её обновление от 14 ноября текущего года.

Все основные файлы проекта выложены, остаётся только standard peripheral library поставить.

Добрый вечер!
Интересует вопрос создания и записи данных в текстовый файл на флешке с периодичностью в 100кГц.

Есть камера DCR-DVD203E ПИШИТ на мини сд диск …задача убрать сд и установить блок записываюший на флеш карту 32-64 ГБ.. ЕСТЬ ВНАЛИЧИИ НО КАК СДЕЛАТЬ???? ВОПРОС— СМОГЛИ БЫ СДЕЛАТЬ И ЦЕНА ВОПРОСА

По обоим вопросам не чем помочь не смогу.

«Если вы обнаружили, что обратная связь не работает, просьба сообщить об этом через комментарии».
Сообщаю 😉

Сайт работает исправно, всё что приходит вижу. Это меня завалило работой по всем фронтам. И поэтому уже с пару недель на сайт не отвечаю. Скоро одни дела завершу и на недели со временем должно будет быть чуть посвободнее, отвечу на всё, что накопилось.
1. В идеале лучше использовать простые карты памяти, не HD. Но статистики по картам у меня нет.
2. Перепроверьте распиновку карты памяти по другим ресурсам в интернете, кто-то когда то замечал у меня ошибку, не помню подтвердил её и исправил или нет.

Понятно, извиняюсь за нетерпение 🙂
Спасибо за ответ, если найду ошибку — напишу в чем было дело.

Хм, проблема оказалась в интересном месте. На одном форуме нашел статью человека, у которого была схожая проблема. На ножках, задействованных в SPI1, также висит JTAG. Так вот оказалось, что он включается автоматически после Reset, несмотря на то, что я нигде его не включаю как альтернативную функцию. В статье предлагалось решение этой проблемы (), я же просто использовал другой SPI. После чего стало возможным отослать 74 синхроимпульса.
P.S. Правда дальше все равно не заработало 🙂 После отсылки запроса на программный сброс(с пустым аргументом) ответа на команду не приходит 🙁 Будем искать еще ошибки.

И это снова я. И опять ошибка возникала из-за неправильной работы ножки. В качестве ножки SlaveSelect я выбрал ту, которая указана в ДШ как NSS для SPI2. Настроил ее на ее на управление программно. Сброс/установку ножки осуществлял с помощью функции SPI_NSSInternalSoftwareConfig() (так написано в библиотеке SPL). Так вот ножка не изменяла своего значения! Более того, когда я перестал использовать эту функцию и стал напрямую менять бит через регистр порта BSRR, то ножка все равно постоянно была выставлена! Причины я не знаю. Возможно, что все дело в режиме программного управления NSS. Поэтому когда я стал использовать для SlaveSelect другой пин, то все заработало — ответы стали приходить.
P.S. Правда дальше все равно не заработало….Опять… 🙂
Поэтому снова обращение за советом к уважаемому автору (когда он разгребётся с работой) 🙂
Ситуация такая: на команду SEND_IF_COND приходит ответ 0x01 — значит флешка v2 — вроде бы логично — флешка куплена неделю назад и навряд ли она v1. Идем дальше: отсылаю ACMD41, т.е. APP_CMD (получаю ответ 0x01 — вроде тоже все норм) и APP_SEND_OP_COND — получаю ответ 0x05. Имеем illegal command error, значит флешка не воспринимает такую команду. Решил попробовать отослать просто CMD1(вдруг карта версии v1), т.е. SEND_OP_COND — получаю ответ 0x01. Т.е. карточка никак не хочет инициализироваться, т.к. ждем 0x00. Может ли быть еще другие варианты последовательности инициализации?

Решил проблему 🙂 Долго гуглил, находил различные решения (причем некоторые были противоположны друг другу:О) но ничего не помогало. Увидел вот эту ссылку http://stackoverflow.com/questions/2365897/initializing-sd-card-in-spi-issues — решил что это не поможет и стал дальше искать, а зря…. Так как позже, отчаявшись, решил пробовать все решения и добавил несколько команд spi_read(); в начале функции SD_sendCommand() и карточка наконец инициализировалась 🙂
P.S. В той же ссылке есть другой совет — «send ACMD41 with the bit set for the voltage you’re supplying the card with», и этот человек утверждает, что ему это помогло, хотя в Physical Layer Simplified Specification Version 4.10 говорит про аргумент ACMD41 так:
Argument Reserved bit HCS Reserved bits
Command Description — Sends host capacity support information and activates the card’s initialization process. Reserved bits shall be set to ‘0’
что явно противоречит выше сказанному. Так что не всем советам стоит верить. Возможно, что и моим тоже 🙂

И снова здравствуйте! 🙂 В ходе использования карточкой возник вопрос: а как отследить что мы пишем в неверный сектор? Я имею ввиду, например, на карте 1000000 секторов, а мы пытаемся записать в 1000001. Карта это спокойно воспринимает — присылает valid-ный R1-response на команду (0x00) и valid-ный Data-response после приема данных (0xE5, но это тоже самое что 0x05, ведь значимые только младшие 7 бит).
P.S. Причем при попытке считать из неверного сектора R1-response 0x40, т.е. Parameter Error.

stm32f103 контроллер? У них столкнулся с подобной проблемой, только в другом ключе и использовал не SPI. Решение проблемы нашел, в рамках одного из будущих материалов опишу его на сайте.
По остальным вопросам отправил Вам письмо.

Alex_EXE, благодарю за письмо. Всеми ссылками, которые Вы указали, активно пользовался и до этого 🙂 Кроме первой 🙂 Но она тоже выглядит полезной и ее стоит добавить в закладки. Я так понимаю Вы давали ссылку в этой статье на нее, но только на нерабочую версию, поэтому решил добавить ее в комментарии: http://mycontroller.ru/old_site/category/vneshnie-ustroystva/karta-pamyati-sd/default.htm
Теперь по поводу чем дело кончилось:) К сожалению, ответа на него я не нашел 🙁 Нет, проблему-то я решил, правда другим способом, но мне кажется что это лишние действия и было бы лаконичнее и красивее, если бы карта выдавала Parameter Error на попытку записать в неверный сектор. Возможно, где-то в закоулках даташита, все-таки скрывается ответ и его нужно просто очень внимательно прочитать 🙂 А вот об этом речь пойдет дальше, в следующем комменте 🙂

Так вот. Как я думал решить проблему. Чтобы не писать в несуществующий сектор нужно просто знать их количество и проверять не вышли ли мы за предел 🙂 Знаю, банально, но решать проблему как-то надо 🙂
Есть такой регистр CSD (The Card-Specific Data register) В нем определенные биты отвечают за размер карты C_SIZE, при чём: memory capacity = (C_SIZE+1) * 512KByte. Т.е. отсюда можно посчитать количество секторов. Читается он с помощью CMD9 (SEND_CSD). Нашел наверно с десяток ссылок (например https://my.st.com/public/STe2ecommunities/mcu/Lists/cortex_mx_stm32/Attachments/18065/stm32_eval_spi_sd.c) в которых был написан один и тот же(по смыслу, а не скопипащенный 🙂) алгоритм чтения этого регистра. Суть сводилась к следующему:
Reading the contents of the CSD register in SPI mode is a simple read-block transaction (при чем в даташите есть точно такая же строка, но абзац на этом не заканчивается, но видимо дальше никто не читает 🙂). В итоге, во все ссылках такая последовательность действий:
CS в ноль -> шлем команду CMD9 с пустым аргументом -> ждём R1(0x00) -> ждём Data Token(0xFE) -> читаем 16 байт регистра -> читаем 2 байта CRC -> CS в единицу. Всё, данные получили, осталось только их распарсить.
ОК, пишу код, запускаю. На команду отвечает R1(0x00), всё норм. Вместо Data Token(0xFE) приходит 0x7F, а дальше идут 0xFF. Приехали. Начинаю гуглить, искать что означает 0x7F и кто с этим сталкивался. Вообщем потратил кучу времени и всё в пустую. Потом смотрю на свой код команды чтения сектора и стоп! — в CMD17 сначала шлем команду, а потом CS в ноль, а тут наоборот почему-то, хотя везде сказано что что CMD9 та же самая CMD17. Думаю дай-ка попробую так. Ииии…нет 🙁 всё равно не получаем 0xFE. НО, если раньше дальше шли 0xFF, то теперь какие-то непонятные байты. Странно, непонятно…И тут у меня появилась мысль и полез я в даташит. И что же я там увидел, в следующей части абзаца, после строки про simple read-block transaction. А вот что:
The card will respond with a standard response token followed by a data block of 16 bytes suffixed with a 16-bit CRC.
Т.е. в даташите для команды CMD9 ни про какой Data Token не сказано! Т.е. сразу после R1(0x00) идут байты регистра! Вот что значат эти непонятные байты. Проверил — действительно, 18 байт (16 + CRC), а потом уже пошли 0xFF. Распарсил байты и проверил провел по даташиту все сходится, это он — CSD. И размер карты тоже сошелся. Ну дальше дело техники посчитать количество секторов.
Так что вот, мой так сказать опыт по этому вопросу, может кому пригодится, чтобы не трать (как мне дурачку) такое количество времени на поиски ошибок на пустом месте 🙁Alex_EXE пишет 22.10.2016 в 20:28

Кто знает, эта библиотека подойдет чтобы подключить к discovery флешку от mxic 25l на 32Мб?

BigPack 25 февраля 2014 в 22:02

Полнофункциональный драйвер SDHC карты памяти для Stm32f4 (часть 1)

  • Системное программирование

Для чего эта статья?


Все эмбеддеры, рано или поздно, сталкиваются с проблемой нехватки ПЗУ микроконтроллера для своих проектов. Ну банально, Вам нужно разработать систему управления простеньким ЧПУ станком, где управляющая программа хранится на самом девайсе или систему сбора данных, скажем, от датчиков какого-нибудь эксперимента – очевидно, что микроконтроллер изначально не предназначался для хранения таких массивов информации.

Решений сего кейса масса, начиная от приобретения и подключения микросхем EEPROM и заканчивая коннектом стандартной USB флешки к аппаратному USB хосту камня (если таковой имеется, конечно). Ну, а для хэнд-майд проектов, отличным вариантом будет самая, что ни на есть классическая SD’шная карта памяти. Они бывают разного типа, имеют различные механизмы инициализации и передачи данных и подключаются к хосту через различные интерфейсы (их, правда, только три, но об этом позже). Более того, многие современные микроконтроллеры имеют на своем борту аппаратные модули этих интерфейсов, и работа разработчика сводится лишь к их конфигу и посылу карточке нужных команд в соответствии с протоколом. Ну и еще карты памяти имеют приятное свойство элементарно покупаться на каждом шагу.

О Secure Digital (SD) картах


Не буду переписывать Википедию – приведу здесь основные сведения и виды SD карт памяти и их характеристики.
Secure Digital формат – популярный (пожалуй, самый популярный на сегодняшний день) формат flash памяти для использования, в основном, в портативных устройствах. Внутри каждой такой карточки имеется, собственно, микросхема flash памяти (Memory Core) и, связывающий ее с внешним миром контроллер, имеющий 8 регистров. Задачи последнего – аппаратная реализация внешних интерфейсов, поддержка информации о карте (тип, емкость, класс скорости еще куча других характеристик), контроль электропитания, и, конечно, управление самой микрухой памяти (адресация, чтение, запись, очистка и оганизация порядка 80 команд управления).

Формат SD был основан компаниями Panasonic, SanDisk и Toshiba на основе MMC карт. Позже эти компании создали организацию SD Card Association, в настоящее время занимающуюся разработкой и продвижением технологии SD. Основной документ, в котором досконально описан интерфейс, протокол, команды, регистры карточек - Physical Layer Simplified Specification (Copyright 2001-2006 SD Group (Panasonic, SanDisk, Toshiba) and SD Card Association). Именно эту информацию используют всякие R&D центры при разработки аппаратного и программного обеспечения своих будущих девайсов. Сам файлик благополучно лежит в свободном доступе в инете, и скачать его не предоставляется никаких сложностей. Так вот, в соответствии с этим документом, существуют следующие типы карт памяти:
SD карты (или еще SDSC (Secure Digital Standard Capacity)) – первое поколение карт памяти. Ограничение по объему – 2 Гб. Минимальный размер адресуемого пространства – 1 байт.
SDHC карты (Secure Digital High Capacity) – карты памяти повышенной емкости (до 32 Гб). Имеют существенное отличие от первого типа, а именно, адресация происходит блоками по 512 байт и никто в этом мире не может изменить это значение. Иными словами, нельзя просто так взять и записать, к примеру, 71 байт информации: минимальный размер пачки, повторюсь, 512 байт. Особо не копал, почему так, но есть личное мнение, что это из-за используемого 32-битного адресного пространства контроллера и из-за того, что карты памяти обычно форматируются под ту или иную файловую систему, размер кластера которой удобно сочетается с такими блоками. Еще у SDHC карт дугой процесс инициализации, о котором поговорим чутка по позже.
SDXC (Secure Digital eXtended Capacity) – карты памяти расширенной емкости – теоретически аж до 2Tб памяти. Адресация тоже по 512 байт. Вот оно и получается при 32-битном пространстве: (2^32)*512 = 2 Тб.

На каждое поколение карт существуют спецификации, и при этом в каждом документе на более новое поколение описывается инфа о старых – то есть они «толстеют» с каждым обновлением продукта. Так что скачиваем Physical Layer Simplified Specification самой последней версии и находим там все, что надо для работы со всеми поколениями карт. Кроме этого, карты памяти делятся на несколько классов по скорости чтения/записи данных. Ну, а что касается всяких там mini-, microSD, microSDXC и т.д. – это всего лишь другой размер корпуса и распиновка – никаких внутренних отличий от карточек стандартных габарит.

А теперь важно: ВНЕ зависимости от типа карты, емкости, ее производителя, типа корпуса, цвета и магазина, где вы ее купили – все Security Digital карты имеют одинаковые интерфейсы взаимодействия с внешним миром. Команды, механизмы инициализации – разные, да, но интерфейсы – ОДИНАКОВЫЕ. Именно это позволяет напофиг воткнуть в фотик как SD, так и SDHC карту памяти. Ну, вот и пришел момент обсудить язык карточки, а точнее аж три: SD и UHS-II (нэйтив спикер) и «язык универсальной микропроцессорной коммуникации, который сейчас знает каждая нерезаная собака микроконтроллер» - SPI .

Интерфейс карты памяти


Как было сказано выше, Security Digital карты имеют три внешних интерфейса: SD, UHS-II и SPI. Первые являются «родными» каналами обмена данными с хостом, и, как следствие, позволяют реализовать полнофункциональное, полноскоростное взаимодействие. SPI же не поддерживает ряда команд и не дает максимальной скорости обмена данными, зато он есть во всех микроконтроллерах (и в современных и в старых моделях), что делает возможным без особых проблем приконнектить карточку ко всему, что плохо лежит. Существует масса статей о том, как это сделать. Но, с развитием микропроцессорной техники, с уменьшением нанометров в технологическом процессе производства камней, SPI интерфейс, как средство коммуникации с SD картой постепенно отмирает. Действительно, если ваш МК поддерживает аппаратную реализацию SD протокола, будите ли Вы связываться с менее функциональной альтернативой? Судьба послала мне на проект камень Stm32f4 от STMicroelectronics, в котором как раз таки и имеется периферийный модуль SDIO (Security Digital Input Output), аппаратно реализующий и интерфейс, и протокол карточки.

Так что же такое SD протокол и с чем его едят? Ключевых понятий тут три:
команда – последовательность битов, воспринимаемых контроллером карточки и призывающих его к тому или иному действию;
отклик – ответ контроллера карты на команду. Он может содержать как общую информацию (статус карты, текущее состояние различных внутренних модулей и т.д.), так и, собственно, ожидаемую хостом информацию (запросили в команде идентификатор карты – получили его в отклике);
данные – ну тут без комментариев.

Но прежде, чем посмотрим на логику протокола, обратимся к физике интерфейса (очень обзорно).


Pin 4 – питание карточки;
Pin 3, 6 – земля;
Pin 5 – тактовый сигнал;
Pin 2 – линия команд и откликов;
Pin 1, 7, 8, 9 – линии 4-битной шины данных.

Все посылки карточке и обратно есть последовательности битов, строго синхронизированные с тактовым сигналом, передаваемым по линии CLK . Рекомендуемые частоты описаны в спецификации на карту и имеют различное значение, в зависимости от ее типа и класса скорости. Отмечу только, что для любой карты инициализация проходит на очень малой (по сравнению с передачей данных) частоте. Шина данных может быть 1-битной (работает только D0) или 4-битной – это конфигурируется при инициализации. Важно, что для SD карт со стороны хоста линии данных и команд должны быть Push-Pull и быть подтянуты к питанию через резисторы 4.5 – 10 кОм. Тактовую шину тоже нужно подтянуть к питанию.

Ну, а теперь к протоколу!
Бывает несколько вариантов обмена информацией хост – карта.

1) Команды без данных.
Все команды делятся на требующие и не требующие отклик .

Как видно из рисунка, если нам (хосту) нужно послать команду, не требующую отклика – просто шлем ее. Если же, команда подразумевает некий ответ, шлем, а затем ждем ответа. Почти все команды и отклики проверяются контрольной суммой, как со стороны хоста, так и со стороны карты. Ну, посмотрим на формат команды:

Кадр состоит из 48 бит. Первый – старт бит – всегда нуль. Затем, говорим, что данные направляются от хоста к карте и посылаем команду с аргументом. Да, да, команда состоит из индекса и аргумента. После команды обязательно шлем 7-битную контрольную сумму, вычисляемую по алгоритму циклически избыточного кода (CRC) и завершаем посылку стоп битом. Команды бывают двух типов: CMD (базовые команды) и ACMD (Application-Specific Command) . Они могут быть с аргументом и без, иметь отклик и не иметь. Всего существует порядка 80 команд (не считал точно, может и больше) и каждая из них подробно описана в спецификации. Мы остановимся лишь на некоторых, необходимых для основной работы с карточкой (инициализация, чтение, запись). Индекс команды – это та цифра, которая идет после символов CMD или ACMD. Под него отведено 6 бит и 32 бита аргумента команды, если таковой требуется.

Важное пояснение по поводу ACMD : пространство их индексов пересекается с индексами CMD команд, поэтому, чтобы контроллер воспринял команду именно, как Application-Specific, ей должна предшествовать CMD55 !

Отклик (если требуется) – тоже целая тема, хотя бы, потому что их пять типов.

R1 (normal response command) – длина 48 бит. Пожалуй, самый популярный отклик.


Содержит в себе старт бит, бит направления передачи (от карты к хосту), 6 битов индекса команды, побудившей на генерацию отклика, статус карты и, конечно же, контрольную сумму со стоп битом. Всю информацию в отклике этого типа несет 32 битное поле статуса карты . В спецификации тщательно и добросовестно расписано, что означает каждый бит этого статуса (карта занята/свободна, блокирована/разблокирована, текущее состояние автомата передачи данных, готовность к тому или иному действию и многое другое).

R1b – такой же формат, как и в случае R1 отклика, только передает еще флаг занятости (busy) по линии данных.

R2 (CID, CSD register) – длинной в 136 бит отклик передает хосту содержимое CID и CSD регистров контроллера карточки.


Здесь вся полезная информация содержится в 127 битном поле, в которое помещается либо содержимое CID (в случае, если это отклик на CMD2 или CMD10 команду), либо содержимое CSD регистра (в случает посыла CMD9 команды). Так что же это за регистры такие, что под них специальные команды придуманы, да еще и с таким длинным откликом?
CID (Card identification data) – как видно из названия, содержит всю идентификационную информацию о карте (серийный номер, производитель, дата изготовления и др…). CSD (Card-specific data) – вся техническая информация о карте (объем памяти, размер блоков чтения/записи, максимальные скоростные характеристики, максимальные характеристики по потребляемому току в различных режимах и многое другое). Именно эту информацию использует хост мобилы или камеры для получения всей информации о вставленной карточке.

R3 – длиной в 48 бит, приходит как ответ на команду ACMD41 и несет в себе информацию о содержимом OCR (Operation Conditions Register) регистра карты.


ACMD41 – команда инициализации карты. После ее посыла необходимо ожидать данного отклика, который будет говорить об успешном завершении процесса инициализации и сообщать содержимое регистра OCR (доступный диапазон напряжений, тип карты памяти, и флаг занятости).

R6 (Published RCA response) – содержит в себе RCA (Relative card address) карты и некоторые статус биты.


Шина предполагает подключение нескольких карт к одному хосту. Поэтому очень важно такое понятие, как собственный адрес карты на шине. Это и есть содержимое RCA регистра.

R7 (Card interface condition) – 48 битовый отклик на команду CMD8.


Карта оперирует определенным напряжением, ни больше не меньше. До инициализации необходимо это валидировать (об этом позже). В ответе карта посылает само напряжение (точнее значение, соответствующее этому диапазону) и некий чек паттерн (об это тоже позже).

2) Данные.
Напомню (это было сказано давно…), мы рассмотрели посыл команд и получение отклика от карты. Теперь самое время разобраться с тем, как же слать, собственно, данные. Повторюсь, делается это блоками по 512 байт (для SDHC карт) - все адресное пространство карты разбито на 512 байтовый ячейки . Посылке данных всегда должна предшествовать специальная команда, говорящая контроллеру карты о том, что данные вот-вот уже пойдут. А идут они, как я уже говорил – по 1- или 4-битной шине. Посмотрим на формат посылки данных к хосту от карты (чтение).

Возможны два режима передачи данных: одним блоком (block read operation) и несколькими блоками сразу (multiple block read operation). В любом случае, старт передачи и ее завершение происходят по специальной команде, обратите внимание, с откликом.

Обратная процедура (запись) осуществляется аналогичным образом, только между пачками обязательно присутствует busy, сигнализирующий о неготовности карты принять следующий блок (данные еще не записались во флэш карты).

Инициализация SD Карты памяти


Ну мы, эмбеддеры, люди привыкшие, что все надо инициализировать, поэтому SD карта не является исключением из этого великолепнейшего правила. Нужно прочекать поддерживаемые напряжения, назначить адреса, и вообще, убедиться, что мы можем работать с данной картой. Посмотрим на алгоритм инициализации, вытащенный из спецификаии и пройдемся по нему по порядку, блок за блоком, дабы понять, что нужно сделать с девайсом перед использованием по назначению.

ВАЖНО : инициализация проводится на низко скоростном режиме! Частота клока карты не более 400 кГц!!!

Шлем CMD0 , обратим внимание, без аргумента и не ждем ничего в отклике. В результате все карты на линии передут в холостой режим.

Помните, я говорил, что напряжение нужно валидировать? Правильно! Нужно сказать карте, на каком вольтаже мы работаем и выслушать от нее все по этому поводу. Шлем CMD8 с аргументом, в котором биты 11:8 означают напряжение хоста и биты 7:0 check pattern (проверочный шаблон) – любой, спецификация рекомендует слать 10101010 . Биты напряжения ставятся в соответствии с таблицей:

Ну, у нас все очень даже определено и далеко не Low Voltage Range. Stm32f4 выдает как раз напряжение в диапазоне 2.7 – 3.6 V, так что ставим 1 на восьмом бите аргумента. Итого, имеем команду с аргументом 110101010 . Отправили. Прочекали, что все отправилось хорошо и ждем ответа, он не заставит нас делать это долго. В спецификации увидели, что ответ на эту команду – R7 типа.
Если мы его так и не дождались, то дальнейшая команда ACMD41 решит, как именно нас надули – подсунули карту версии 1.X стандартной емкости или вообще не SD карту. Правда есть вероятность, что мы просто что-то не так делаем. Но не будем о грустном, и предположим, что флешка все таки ответила. Если с напряжением все хорошо, карта довольна, мы довольны, ответ будет содержать в себе все то, что мы отправили в аргументе, то есть 110101010 . Это называется valid esponse . Если так, переходим к дальнейшему шагу, иначе – опять же – либо надули, либо где-то косяк.

Дождались 110101010 , и пришло время непосредственной инициализации – команды ACMD41 . И тут вспоминаем ВАЖНОСТЬ : чтобы сказать карточке, что команда не простая, а ACMD, отправим сперва CMD55 . В аргументе обязательно указываем, адрес той карты, для которой эта команда предназначена. Но стоп, у нас, ведь, пока нет адреса, мы его не знаем. Ничего, узнаем … но по позже, а пока пишем нули и шлем. Получив ответ типа R1 удостоверяемся, что карта готова принимать ACMD и только после этого шлем 41 индекс! Команда идет с аргументом, в котором на месте 30-ого бита указываем 1, что говорит о поддерживаемости хостом SDHC карт и напряжения хоста на месте 23:0 битов (см. содержимое OCR регистра). Ответ ждем R3 типа. Здесь нам важно получить 1 на месте 31ого бита в пачке ответа, несущей содержимое OCR регистра карты (флаг busy). Это будет говорить о том, что карта завершила процесс инициализации. Виду того, что этот процесс длится долго (гораздо дольше, чем тактовый цикл микроконтроллера), необходимо слать ACMD41 в цикле до тех пор, пока не получим ответ со снятым флагом занятости. Как только это случилось, чекам 30 бит, и, если он единица, то имеем карту повышенной емкости SDHC или SDXC, и карту стандартной емкости SD в противном случае. Если же мы ждали, ждали, а флаг бизи все висит и висит, то, как и в описанном выше случае – либо неподходящая карта, либо (скорее всего) наш косяк.

Далее шлем CMD2 - без аргумента и смотрим на ответ R2 . В этом случае он будет нести информацию о содержимом CID регистра, и мы сможем вычитать ID производителя, серийный номер карты и прочую информацию.

И, наконец, заключительный шаг – получение адреса карты (RCA - relative
address
). Как оно уже упоминалось, к одной шине может быть подключено несколько карт, поэтому каждая должна иметь свой уникальный локальный адрес. Шлем CMD3 и получаем ответ типа R6 , в котором в младших 16 битах содержится статус карты, а в старших – новый RCA адрес. Отныне, для доступа к нашей карточке, мы должны будем звать ее по имени, то есть по RCA адресу.

Опциональный пункт. По умолчанию карта работает с 1-битной шиной данных, что, ясное дело, медленнее, чем с 4-х битной. Если мы хотим достичь максимального быстродействия – шлем ACMD6 , с предшествующей CMD55 , конечно же. Но прежде, нужно перевести карту в состояние Transfer State (см. ниже) командой CMD7 с RCA в качестве аргумента. В аргументе ACMD6 на месте самого первого бита пишем 1 – если хотим включить 4-битный мод и 0 – для отключение. Ответ R1 скажет об успешном проведении операции.

Пример инициализации SDHC карты
В данном примере используется самодельная функция посылки команды, написанная под периферию Stm32F4.
char SDIO_send_command(char index, unsigned int arg, char resp_type, unsigned int *resp);
index – индекс команды;
arg - аргумент;
resp type – тип отклика (0 – без отклика, 1 – короткий (48 бит) отклик, 2 – длинный (136 бит) отклик);
resp - массив откликов (в случае короткого отклика информацию несет первый элемент массива, в случае длинного – 4 элемента).
Команда возвращает 0, в случае успешной операции посыла команды и приема ответа и код ошибки в противном случае.

Char SDHC_card_initialization(unsigned int *RCA) { char result; unsigned int RESP; result = SDIO_send_command(0, 0, 0, RESP); //Посылаем CMD0, дабы обнулить карты if (result != 0) return result; //Чекаем на успех result = SDIO_send_command(8, 0x1AA, 1, RESP); //Посылаем CMD8 с аргументом 110101010 if ((result != 0) || (RESP != 0x1AA)) return 4; //Чекаем на успех while(!(RESP&(1<<31))) //Ждем, пока флаг бизи не слезет { result = SDIO_send_command(55, 0, 1, RESP); //Шлем CMD55, тем самым, говоря, что потом будет ACMD if (result != 0) return result; result = SDIO_send_command(0x29, 0x40020000, 1, RESP); //Шлем ACMD41 if (result != 0) return result; } result = SDIO_send_command(2, 0, 3, RESP); //Шлем CMD2 и получаем инфу о карте if (result != 0) return result; result = SDIO_send_command(3, 0, 1, RESP); //Шлем CMD3 и получаем RCA номер if (result != 0) return result; SDIO->CLKCR = (0x02<<0)|(1<<11)|(1<<8)|(1<<14); //Наращиваем клок (в части 2 - подробнее) *RCA = (RESP & (0xFFFF0000)); //Маскируем отклик и получаем RCA result = SDIO_send_command(7, *RCA, 1, RESP); //Выбираем нашу карту if (result != 0) return result; result = SDIO_send_command(55, *RCA, 1, RESP); //Шлем CMD55, тем самым, говоря, что потом будет ACMD if (result != 0) return result; result = SDIO_send_command(6, 0x02, 1, RESP); //Шлем ACMD6 c аргументом 0x02, установив 4-битный режим if (result != 0) return result; if (RESP != 0x920) return 1; else return 0; //Убеждаемся, что карта находится в готовности работать с трансфером return 0; }
Запускаем код, убеждаемся, что в ответе пришел НУЛЬ и завершаем инициализацию. Все, можем работать с памятью и писать/считывать информацию.

Обмен данными


Здесь всем рулит SD Memory Card State Diagram (data transfer mode).


Существует 6 статусов карты в этом режиме и узнать их можно в отклике R1 на месте 12:9 битов. Обратимся к спецификации.


Stand by State (stby) – устанавливается после инициализации вместо Idle State.
Transfer State (tran) – режим передачи данных.
Receive Data State (rcv) – ожидание пачки данных от хоста.
Programming State (prg) – запись принятой пачки во flash.
Sending Data State (data) – посылка пачки данных хосту.
Disconnect State (dis) – используется для выбора другой карты командой CMD7.

Запись данных на карту
Итак, после успешной инициализации мы находимся в состоянии tran , во всяком случае, должны находиться. Смотрим по диаграмме: для того, чтобы перейти на состояние rcv , нужно послать команду CMD24 с адресом 512 байтной ячейки, которую хотим записать. Послали. Карта перешла в режим ожидания данных. Далее начинаем кидать ей информацию по шине данных, пока не перекинем все 512 байт или не пошлем команду CMD12 (стоп передачи). После завершения акта, карточка сама переедет в состояние prg и пробудет там некоторое время (пока данные запишутся). Ждем.… Как имено ждем? А посылаем ей в цикле CMD13 с адресом карты в аргументе, до тех пор, пока не вернется в отклике R1 типа статус tran . Когда это, наконец, случилось можно слать очередную пачку данных, вновь послав CMD24. Кроме того, существует еще режим записи несколькими блокам сразу (CMD25) и другие режимы – за подробностью – в спецификацию.
Чтение данных
Дабы выполнить обратную процедуру, в первую очередь, убеждаемся, что карта стоит в tran . Шлем CMD17 с адресом RCA в аргументе. Если все пройдет успешно – карточка переедет в состояние data и начнет выдавать на линии данных информацию, опять же 512 байтным блоком. Задача хоста в это время внимательно слушать линию и считывать данные. Как только посылка закончится, карта сама переедет в статус tran . Думаю, не стоит и говорить о том, что считывание так же как и запись возможна несколькими блоками сразу.

Не буду приводить в этой статье листинг программы чтения/записи, так как он, в отличии от подпрограммы инициализации слишком сильно завязан на железе SDIO модуля микроконтроллера Stm32f4, а это – тема второй части статьи.

Обновлено18.12.15. Всем привет. Сегодня мы продолжим разработку контроллера сбора данных, а именно сохранение информации непосредственно на карту SD . В прошлой статье была налажена работа термометра. Теперь эту информацию по времени, при подключении в дальнейшем часов реального времени(статья №29 ), мы будем заносить на карту памяти, получив своеобразную базу данных. А также в дальнейшем перенесем эту информацию на ПК (статья №42), в базу данных под управлением MySQL (статья №48), через небольшое приложение на Java (статья №44). Но сперва разберемся что такое SD – карта и как с ней работать. Начнем с краткого обзора истории. Предшественником Flash-памяти является одна из энергонезависимых видов памяти , типа , которая зарекомендовала себя и используется в микроконтроллерах. Flash-память возникла в ходе потребности увеличения емкости и изменения технологии стирания (в случае с памятью EPROM). Поэтому в 1984 году инженер компании Toshiba Фудзио Масуокой изменил технологию стирания, что в свою очередь решил недостатки предшественников Flash-памяти. Хочется добавить, что далее данная память начала делится по внутреннему устройству соединения ячеек в массив и алгоритмами чтения-записи – это NOR- и NAND-технология. А также различие по количеству хранимых битов в элементарной ячейке. Это SLC-устройства (single-levelcell), т.е. однобитовые ячейки различают только два уровня заряда на плавающем затворе. И MLC- устройства (multi–levelcell) — многобитовые ячейки различают больше уровней заряда. Второй тип приборов дешевле и более ёмкий, чем SLC-приборы, однако с большим временем доступа и меньшим максимальным количеством перезаписей (около 10 тыс. и 100 тыс. — SLC).

Вообще устройства технологии NOR — это двумерная матрица проводников, что позволяет получить более быстрый доступ к каждой ячейки памяти, но при этом площадь ячейки считается большой, поэтому данная технология используется для памяти программ микропроцессоров и для хранения небольших вспомогательных данных, сюда же можно включить и специализированные микросхемы начальной загрузки компьютеров
(POST и BIOS), процессоров ЦОС и программируемой логики.Типовые объёмы - от 1 кбайта до 1 Мбайта.
Второй тип устройства — NAND-технология — трехмерный массив имеет малую площадь ячейки, но относительно длительный доступ сразу к большой группе ячеек. Используется для больших объемов памяти. Вот с этой памятью мы и будем работать.
Но перед этим хочется сказать об недостатке. Как и у всего есть свой срок использования, так и у памяти есть ресурс износа. Производители в гонке за емкостью и лидерством на рынке, всегда упускают такой показатель как качество, т.к. он не совместим с высокой ценой. Так возвращаясь к износу хочется отметить что срок хранения информации при использовании MLC-устройств составляет примерно 5 лет, что связанно с накоплением необратимых изменений при изменении заряда. Если брать память NAND c SLC-устройства, то они являются более качественными, и соответственно дорогими. Стоит отметить что срок хранения информации очень во многом зависит от температуры, гамма-радиации и частиц высокой энергии.
Выше было сказано, что недостаток карты это ограниченное количество циклов перезаписей. Когда мы будем использовать файловую систему для управления файлами, то должны знать что такие системы записывают данные в одно место, естественно расходую ресурс выделенной области в итоге вывода ее из строя и соответственно уменьшая емкость. Для этого типа памяти используется NAND-контроллер, который должен равномерно распределять износ. Однако для удешевления устройств контроллер может и не использоваться, а его работу будет выполнять программный NAND-драйвер в операционной системе. После этого открытия, многие компании занялись разработкой своих стандартов портативных карт.

Далее перейдем непосредственно к рассмотрению карты.
Secure Digital Memory Card (SD) - формат карт памяти, разработанный для использования в основном в портативных устройствах. Чтобы разобраться в ее работе мы будем использовать спецификацию, которая описывает данный стандарт и называется SD Specifications ver3.01.
Первое что нам необходимо, так это разобраться как работать с этой картой, как подключить и прочее. Сначала выберем карту. Для экспериментов я взял microSD емкостью 2Гб, стандарт емкости SDSC. Шина карты может работать по двум протоколам SD и SPI. Хочется отметить что данная карта это своего рода модификация карты MMC, где (в карте SD) основное внимание было уделено системе безопасности. Поэтому алгоритм работы по протоколу SPI такой же, ну и конечно же они односторонне совместимы. Т.е мы можем в слот SD карты вставить MMC, но не наоборот.

На рисунке ниже представлена схема подключения карты SD по протоколу SPI .
Данный интерфейс позволяет обмениваться данными на высокой скорости, задействовав при этом минимальное количество выводов микроконтроллера, которые оснащены модулем SPI. С этого момента начнем использовать спецификацию. Первое что нас интересует- выбор режима. Разберемся в тонкостях на рис. ниже из раздела 6.4.1.1 представлена диаграмма напряжения питания и последовательность посылки команды. Здесь четко видно что после включения карты необходимо выждать несколько миллисекунд (1мс + от 0.1 до 35 мс(нарастание)) на стабилизацию. В течении этого времени на CS, MOSI линии должна быть подана 1. Далее происходит задержка инициализации максимум 1 мс, при подаче на вход CLK 74 импульсов (тактов), после чего должна идти команда CMD0. Перейдем к главе 7 где четко описана последовательность действий.

Диаграмма напряжения питания

SPI протокол выбирается после включения питания и подачи команды сброса CMD0. Сама по себе карта SD работает в режиме SD. Вход в режим осуществляется если сигнал SC при подаче команды CMD0 будет 0. При переходе в режим SPI карта ответит форматом R1 (рисунок ниже). Формат ответа представляет собой байт (зависит от команды см. таблицу 7.3 в спецификации) с флагами определяющие состояние карты. Правильные ответы для нас это будет 1 (в случае команды CMD0) и 0 во всех других случаях.
1-й бит – режим ожидания
2-й – ошибка стирания
3- й – неизвестная команда
4-й – ошибка команды
5-й – ошибка в последовательности стирания
6-й –ошибка адреса
7-й – ошибка аргуента

В процессе сброса, карта должна ответить 0×01, что соответствует первому биту.

В спецификации есть четкая последовательность инициализации для SPI. Для чего используется команда CMD8 для проверки рабочего состояния карты, где происходит довольно не простой алгоритм проверки. Далее команда CMD58 для определения типа карты SDSD или SDHC и SDXC. А также команда CMD41 для запуска и проверки инициализации. Довольно не простой процесс инициализации с проверками, но я думаю что для простой записи данных можно использовать более упрощенный процесс. В разделе 7.2.7. говорится, что в режиме ожидания единственно допустимые команды для карточки CMD41, CMD8, CMD58, CMD59 , а также для карт (толстых 2.1мм) памяти SD CMD1, который идентичен команде CMD41. В стандарте эта команда считается запрещенной для инициализации, и используется исключительно для различия карт 1,4мм и 2,1мм.
Пойдем более простым путем и используем команду CMD1. Все выше описанное отобразим в коде в функции инициализации, но перед этим рассмотрим формат команды. Каждая команда или блок данных состоят из восьми битных байтов, которые выравниваются по сигналу CLK. Т.е. каждая команда выравнивается по границе 8 тактов. Сообщения SPI состоят из команды, ответа и данных. Вся связь контролируется микроконтроллером. Все команды имеют длину 6 байт. Передача начинается с первого левого бита.

На рисунке ниже представлен формат команды.


Старт бит – с 0 начинается любая команда. Передаваемый бит – тоже всегда равна 1.
Индекс – непосредственно передаваемая команда.
Аргумент- для каждой команды аргумент указан в таблице спецификации.
CRC – проверка избыточности кода. По умолчанию в режиме SPI она отключена. Поэтому мы ее используем только для команды CMD0, которая посылается до входа в режим и имеет значение CRC 0×95.
Стоп бит - конец передаваемой команды.
Что ж приступим к написанию кода.
Начнем с необходимых 2-х функций: передача и прием байта.
1. Передача байта карте.
void trans_byte_sd (unsigned char data)// передаем массив битов
{
for (unsigned char i=0;i<8;i++) //Перебираем байт
{
if ((data&0×80)==0×00) //Если старший бит = 0
PORTB&=~_BV (PB3); //Выставить MOSI (DI) -0
else
PORTB|=_BV (PB3); //1
data=data<<1; // сдвиг влево
PORTB|=_BV (PB5); //Импульс или строб
asm («nop»); //Пауза в 1 такт
PORTB&=~_BV (PB5);
}
}
2. Прием байта микроконтроллером.
unsigned char receive_byte_sd (void) // Возвращаем ответ
{
unsigned char data = 0; // инициализируем массив
for (unsigned char i=0; i<8; i++)
{
PORTB|=_BV (PB5); //Фронт импульса
data=data<<1; // Сдвигаем влево
if ((PINB&_BV (PB4))!=0×00) // Если состояние пина 1
data=data|0×01;
PORTB&=~_BV (PB5); //0
asm («nop»);
}
return data; // Возвращаем ответ
}

Из выше описанных, основных, функций начнем писать дальнейший код. Далее пропишем функцию передачи команды. Здесь хочется обратить внимания, на то, что Вы можете передавать все 5-ть аргументов: непосредственно саму команду и 4-аргумента отвечающих за адрес ячеек памяти самой карты. Что касается 6-го байта, то CRC при входе в режим SPI отключается (по умолчанию) и значение постоянно равно 0×95, которое используется только для CMD0, когда карта не в режиме. Включить проверку кода можно командой CMD58. Для экспериментов я передаю два аргумента.

3.Передача команды.
unsigned char comand_sd (char CMD, char arg) /*передаем команду и адрес к которому обращаемся и возвращаем ответ*/
{
long int i=0; // переменная для счетчика
unsigned char r1; // ответ карты
trans_byte_sd (CMD); // команда
trans_byte_sd (0×00);
trans_byte_sd (0×00);
trans_byte_sd (arg); // передача адреса
trans_byte_sd (0×00);
trans_byte_sd (0×95); // Передача CRC
/* После передачи команды ждем ответа формата R1.Каждой команде соответствует свой ответ*/
/* Цикл для ожидания получения ответа за определенное время*/
do
{
r1=receive_byte_sd ();
i++;
}while (((r1&0×80)!=0×00)&&(i<0xffff)); /* Как только старший бит байта не равен 0 и i не превышает 65 535 тактов*/
return r1; // Возвращаем ответ
}
4. И нициализация карты.

Теперь мы можем прописать инициализацию карты. Кратко программа описывается следующим образом: первое что необходимо, так это перевести карту в режим SPI. При подаче питания карта устанавливается в режим SD. Для выбора режима SPI на вход CS подается логический 0, в это же время подается команда сброса CMD0 и инициализации CMD1 на вход карты MOSI. Обратим внимание что команда начинается от шестнадцатеричного 0×40, к которому необходимо прибавить номер команды CMD в шестнадцатеричном виде.

unsigned char spi_card_init (void) // функция возвращает ответ
{
unsigned char r1; // переменная для приема ответа
long int i =0; // переменная для счетчика
_delay_ms (10); // небольшая задержка для стабилизации напряж.
PORTB|=_BV (PB1); //CS, устанавливаем 1, при подаче тактов
PORTB|=_BV (PB3); //линия подачи команд — 1 MOSI (DI)
for (unsigned char i=0; i<80;i++) // посылаем более 74 импульса
{
PORTB|=_BV (PB5); //CLK — 1
asm («nop»); //задержка в один такт
PORTB&=~_BV (PB5); //CLK — 0
}
PORTB&=~_BV (PB1); /* условие для входа в режим SPI линия CS должна быть равна 0 */
r1=comand_sd (0×40,0×00); // CMD0=0×40, адрес без разницы
if (r1!=0×01) return 4; //коды ошибок можете ставить любые
trans_byte_sd (0xff); /* посылаем строб, своеобразная пауза перед приемом ответа */
do // цикл приема ответа от карты
{
r1=comand_sd (0×41,0×00); /* посылаем команду инициализации */
trans_byte_sd (0xff); // пауза
i++; // счетчик
}while ((r1!= 0)&&(i<65535)); /*пока не получен ответ 0 и количество циклов не превышает 0xffff */
if (i>=0xffff) return 5; /* возвращаем ошибку если превысило время опроса */
return 0;//Возвращаем 0 в случае успешной инициализации
}

Следующий важный момент, в спецификации пишется, что информация передается блоками, по 512 бит, причем если карта SDSC как в нашем случае, то длину блока можн0 установить от 1 до 512 бит командой CMD16. По умолчанию 512 бит. Далее опишем две функции приема и передачи блоков. В спецификации даны блок-диаграммы, опираясь на которые мы напишем код.

Передача блока информации на карту.

За передачу ЕДИНСТВЕННОГО блока отвечает команда CMD24. После подачи команды, ждем ответ После чего следует стартовый байт, который подготавливает контроллер карты к приему информации, по окончанию карта отвечает байтом о состоянии передачи, который описан в главе 7.3.3.1. Т.е. правильный ответ должен быть= 5. Также ждем освобождения шины для дальнейшей передачи.

Байт отзыва о состоянии передачи.

В разделе 7.3.3.2 описывается формат передаваемого блока
unsigned char receive_block_sd (char* block, char arg) /* передаем массив для записи данных и адрес к которому обращаемся*/
{
long int i = 0;
unsigned char r1;
r1=comand_sd (0X51,arg); //CMD17
if (r1!=0×00) return 5; //Выйти, если ответ не 0×00
trans_byte_sd (0xff);
do //Ждем начала пакета данных
{
r1=receive_byte_sd ();
i++;
}while ((r1!= 0xfe)&&(i<65535));
if (i>=0xffff) return 5;
for (int i=0;i<512;i=i+1) //прием данных
block[i] = receive_byte_sd ();
receive_byte_sd (); //байт CRC
receive_byte_sd (); //байт CRC
return 0;
}

Перед тем как использовать программу, рассмотрим аппаратную часть. Как мы говорили, выше, что карта совместима с микроконтроллером в режиме SPI. Отметим следующие нюансы работы с картой:
1. Сопряжение логических уровней, необходимо при разном напряжении питания SD-карты и микроконтроллера AVR. Можно использовать резистивный делитель напряжения, который является линейным,т.е. напряжение на выходе зависит от напряжения на входе. А можно параллельный параметрический стабилизатор напряжения на стабилитроне, тоже что и первый вариант,только в нижнем плече используется стабилитрон, который является нелинейным делителем, и следит за опорным напряжением за счет своих свойств при повышении входного напряжения уменьшать внутреннее сопротивление,и наоборот.
Я использовал второй вариант. В схеме ниже на сигнальной линии сопротивления являются балластными(токоограничители), на вход делителя поступает напряжение 4,5 – 5 В, а выходное снимается с нижнего плеча делителя. Токоограничители необходимы для защиты карты и другой периферии при сбоях микроконтроллера. При хорошо отлаженном устройстве в них нет необходимости.

Заметьте, что линия MISO не нуждается в согласовании, т.к. работает только в одну сторону от карты к микроконтроллеру.
2. Второй момент, я не использую проверку наличия карты и защиты записи. У кого то есть эти контакты в слотах, у кого то нет.
3. Последний момент- питание. Либо ВЫ питаете 3.3 вольта всю схему, включительно с микроконтроллером, либо ставите делитель на вход схемы, не очень надежно. Либо стабилизатор 3.3 вольта, как я и сделал на микросхеме LP2980 . Важным моментом здесь является электролитический (танталовый) конденсатор, который защищает микроконтроллер от сброса при просадках напряжения.
Ниже представлена программа и результат. Как всегда, я стараюсь использовать одну программу постоянно ее изменяя. Данный код взят из статьи №5 (семисегментный индикатор).

#include
#include
#include
#include
//макросы для работы с индикатором
#define a 128
#define b 32
#define c 8
#define d 2
#define e 1
#define f 64
#define g 16
#define dp 4

// Переменные

char block ={}; //буфер записи/чтения данных на карту
short unsigned int j, k = 0; //в макросе прерывания
unsigned char Slot; // Массив чисел для отображения на индикаторе

//Объявляем функции

void trans_byte_sd (unsigned char data); // функция передачи байта
unsigned char receive_byte_sd (void); //Функция приема байта
unsigned char comand_sd (char,char); // функция передачи команды
unsigned char spi_card_init (void); //Функция инициализации карты памяти
unsigned char receive_block_sd (char* block, char arg); //Функция приема блока
unsigned char trans_block_sd (char* block, char arg); //Функция передачи блока
// Инициализации индикатора
void Slot_init ()
{…………………….};
// Переменные для отображения цифр
char Elem1, Elem2, Elem3;
// Вывод на индикатор
void Display (float i)
{ …………………………... }
int main (void) //начало основой программы
{
DDRB = 0x2A; //0010 1010 – PB1, PB3, PB5
DDRD = 0xff; //все выводы порта — выходы
PORTD = 0×00; //устанавливаем 0
PORTB |= 0хdb; //1101 1011 (PB0,1,3,4,6,7)
Slot_init ();
sei (); // либо SREG |= (1 << 7); разрешить общее прерывание
//инициализация таймера Т0
TIMSK = (1</*Флаг разрешения по переполнению таймера счетчика Т0*/
TCCR0 = (0< //1000000/8 = 125000
unsigned char temp;
int i;
for (i=0;i<512;i=i+1)
block[i]= i; //записываем в буфер
spi_card_init (); //инициализация
trans_block_sd (block,0×04); //отправляем данные карте
//Обнуляем буфер
for (int i=0;i<512;i=i+1)
block[i]=0;
// Считаем данные с карты
receive_block_sd (block, 0×04); ; //Функция приема байта
for (int i=0;i<512;i=i+1)
{
char otv;
otv = block[i];
Display (otv);
_delay_ms (100);
}
//Запишем по адресу в память 0
for (int i=0;i<512;i=i+1)
block[i]=0;
unsigned char comand_sd (char,0×00); //функция передачи команды
trans_block_sd (block,0×04); //отправляем данные карте
}
//Вывод на индикатор
ISR (TIMER0_OVF_vect)
{ ……………. }

Важный момент — это таймауты. Важно следить за временем чтения записи и стирании карты, так как может зависнуть микроконтроллер в режиме ожидания ответа карты. В спецификации четко описаны таймауты карты. Простой карты длится 5 мс, после чего переходит в энергосберегающий режим, в котором допустимы следующие команды CMD0, CMD1, CMD41 и CMD58. Поэтому при превышении лимита простоя передаем CMD1, ответ и дальше работаем с картой.
Внизу представлено два скриншота из программы WinHex , с помощью которой мы можем посмотреть содержимое ячеек памяти. Программа работает следующим образом: Записываем данные в буфер, оправляем карте, обнуляем буфер, считываем данные с карты в буфер и выводим на дисплей тем самым убеждаемся в передачи данных карте. Смотрим содержимое карты, обнуляем буфер, записываем 0 в карту и опять открываем содержимое карты, тем самым убеждаемся в работоспособности программы и схемы. Как всегда незабываем о мелочах, таких как не допайка, не большие трещенки в дорожках и др., что может забрать львинную долю времени. Поэтому если есть под руками осциллограф, то непременно используйте его для наладки. В статье №24 я привел небольшой пример диагностики карты на всех этапах ее работы. мы познакомимся с датчиком влажности и температуры DHT11. После чего начнем записывать данные (температуру и влажность) в текстовый файл, своеобразную базу данных. Пока на этом все. Всем пока.

Существует множество различных типов носителей данных на основе так называемой флеш-памяти. Мы пользуемся обычными флешками для передачи файлов друг-другу, micro-SD картами для увеличения свободного места в смартфонах, даже вместо старого доброго жесткого диска в современных ноутбуках используем SSD носители — ту же флеш-память. Флеш-память не имеет движущихся частей, в отличие от старинных дискет и более новых жестких дисков. Скорость чтения и записи такой памяти выше чем у всех прежних носителей, а энергопотребление — наоборот ниже. Другими словами, если мы хотим в наших электронных устройствах и роботах хранить какие-то данные, то рационально будет воспользоваться именно флеш-памятью. Зачем может понадобиться карта памяти? Например, для того, чтобы записывать на неё данные с различных датчиков нашего устройства. Кроме самих показаний датчиков, рационально еще записывать время съема этих показаний — это называется журналированием. Таким образом, подключив к Ардуино датчики температуры, влажности и давления, а также часы реального времени и карту памяти мы сможем сделать настоящую погодную станцию! Разберем как именно карта памяти подключается к Ардуино и каким образом осуществляется её запись и чтение.

1. Подключение модуля micro-SD карт к Ардуино

В этом уроке мы будем читать и записывать данные на micro-SD карту. В плане подключения в Ардуино, модуль micro-SD ничем не отличается от модуля для обычных SD карт. Модуль подключается к Ардуино по SPI шине, а значит нужно соединить уже знакомые по другим урокам контакты в стандартном порядке:
Модуль micro-SD карт GND VCC CS MOSI MISO SCK
Ардуино Уно GND +5V 4 11 12 13
Принципиальная схема
Внешний вид макета

2. Программа для чтения micro-SD карты

Чтобы проверить работу устройства, напишем простую программу, которая будет лишь считывать с карты служебную информацию: тип карты, тип файловой системы, размер первого раздела и список файлов на нём. #include #include Sd2Card card; SdVolume volume; SdFile root; const int chipSelect = 4; void setup() { Serial.begin(9600); Serial.print("\nInitializing SD card..."); if (!card.init(SPI_HALF_SPEED, chipSelect)) { // неверное подключение или карта неисправна Serial.println("initialization failed"); return; } else { // всё ок! Serial.println("Wiring is correct and a card is present."); } // считываем тип карты и выводим его в COM-порт Serial.print("\nCard type: "); switch (card.type()) { case SD_CARD_TYPE_SD1: Serial.println("SD1"); break; case SD_CARD_TYPE_SD2: Serial.println("SD2"); break; case SD_CARD_TYPE_SDHC: Serial.println("SDHC"); break; default: Serial.println("Unknown"); } // инициализация файловой системы if (!volume.init(card)) { // неверная файловая система Serial.println("Could not find FAT16/FAT32 partition."); return; } // считываем тип и вычисляем размер первого раздела uint32_t volumesize; Serial.print("\nVolume type is FAT"); Serial.println(volume.fatType(), DEC); Serial.println(); volumesize = volume.blocksPerCluster(); // блоков на кластер volumesize *= volume.clusterCount(); // кластеров volumesize *= 512; // 512 байтов в блоке, итого байт.. Serial.print("Volume size (bytes): "); Serial.println(volumesize); Serial.print("Volume size (Kbytes): "); volumesize /= 1024; Serial.println(volumesize); Serial.print("Volume size (Mbytes): "); volumesize /= 1024; Serial.println(volumesize); Serial.println("\nFiles found on the card (name, date and size in bytes): "); root.openRoot(volume); // выводим список файлов root.ls(LS_R | LS_DATE | LS_SIZE); } void loop(void) { } Загружаем программу в Ардуино и открываем монитор COM-порта:
Если появилась подобная информация, значит с картой и модулем всё в порядке. Можно приступать к дальнейшей работе.

3. Программа для записи данных на micro-SD карту

Теперь попробуем создать новый файл на карте и записать туда простую фразу «Hello from robotclass». #include #include const int chipSelect = 4; void setup() { Serial.begin(9600); if (!SD.begin(chipSelect)) { Serial.println("Card failed, or not present"); return; } // строка, которую мы запишем в файл String dataString = "Hello from RobotClass"; // открываем файл, в который будет записана строка File dataFile = SD.open("test.txt", FILE_WRITE); if (dataFile) { // записываем строку в файл dataFile.println(dataString); dataFile.close(); Serial.println("Success!"); } else { // выводим ошибку если не удалось открыть файл Serial.println("error opening file"); } } void loop() { } Загружаем программу. Затем выключаем Ардуино, достаем микро-SD карту из модуля и проверяем на компьютере её содержимое. В корне карты должен появиться файл test.txt с нашей фразой «Hello from RobotClass». Примечание! Имя файла, которое указывается в функции open не должно содержать более 8 букв (не включая расширение).

4. Программа для чтения данных с micro-SD карты

Наконец, прочитаем файл test.txt и выведем в COM-порт текст из него. #include #include const int chipSelect = 4; void setup() { Serial.begin(9600); if(!SD.begin(chipSelect)){ Serial.println("initialization failed!"); return; } // открываем файл для чтения File myFile = SD.open("test.txt"); if (myFile) { // считываем все байты из файла и выводим их в COM-порт while (myFile.available()) { Serial.write(myFile.read()); } // закрываем файл myFile.close(); } else { // выводим ошибку если не удалось открыть файл Serial.println("error opening test.txt"); } } void loop() { } Загружаем программу и открываем монитор COM-порта. На экране должен появиться весь текст из файла test.txt

Заключение

В следующем уроке мы попробуем добавить в схему часы реального времени и датчик температуры. Оставив такое устройство на целый день мы сможем в итоге построить дневной график температуры.

Михаил Русских

Приводится краткая информация о SD-картах, даются основы принципа работы шины SD, поясняется порядок использования драйвера stm324xg_eval_sdio_sd, предназначенного для упрощения связи микроконтроллеров семейства STM32 с SD-картами

Некоторые встраиваемые системы должны иметь возможность хранения больших объемов информации. Например, регистраторы различных физических величин и параметров (ток, напряжение, температура, географические координаты) должны сохранять полученные с датчиков показания на определенном носителе, который впоследствии можно было бы извлечь из устройства и подключить к компьютеру для просмотра данных в удобном для пользователя виде. Для решения такой задачи наиболее очевидным кажется использование USB флеш-накопителей. Они широко распространены на рынке и позволяют хранить большие объемы информации. Но для некоторых малых встраиваемых систем первостепенным фактором является компактность, и габариты этих накопителей могут оказаться чрезмерными. Кроме того, не все микроконтроллеры оснащены модулем USB, и разработчик системы может довольно долго разбираться с USB-стеком, что может увеличить время работы над проектом. В связи с этим хорошей альтернативой USB является использование SD-карт, которые очень компактны и позволяют обмениваться данными с помощью распространенного интерфейса SPI или специального интерфейса для SD-карт.

Карты памяти SD (Secure Digital) разработаны, в основном, для применения в портативных устройствах. Сегодня на рынке существует большое количество моделей, предоставляемых такими компаниями как SanDisc, и способных записывать с зависящей от класса скоростью данные объемом от 8 МБ до 2 ТБ. SD-карты, в отличие от MMC-карт, помимо обычной области хранения данных имеют специальную защищенную область, которая недоступна обычному пользователю. Для того чтобы устройство смогло прочитать записанную на SD-карту информацию в виде файлов, эта карта должна иметь определенную файловую систему. Наиболее предпочтительной в данном случае является система FAT, поскольку количество циклов записи/чтения для SD-карт ограничено, а системы вроде NTFS и ext являются журналируемыми, то есть предполагающими частые опросы.

Передача и прием данных осуществляется по интерфейсу SPI или по шине SD. На Рисунке 1 показано расположение выводов SD-карт различных типов, а в Таблице 1 представлено функциональное назначение этих выводов.

Таблица 1. Функциональное назначение выводов SD-карт

Интерфейс SPI

Интерфейс SD

Карты SDC

Карты miniSD

Карты microSD

Хотя с помощью SPI организация связи хост-контроллера с картой не вызывает затруднений, все же шина SD предоставляет больше возможностей и позволяет пересылать информацию с большей скоростью за счет наличия четырех линий передачи данных. Поэтому ниже более подробно рассмотрим именно этот способ работы с SD-картой.

Передача данных по шине SD

Связь с SD-картой осуществляется по 6 информационным линиям: 4 линиям данных (DAT0, DAT1, DAT2, DAT3), линии синхронизации (CLK), линии передачи команд (CMD). При подключении к контроллеру линии данных и линия передачи команд должны быть подтянуты к питанию, как показано на Рисунке 2.

Запись и чтение данных выполняются поблочно. Обычно блок состоит из 512 байтов. Передача данных и служебной информации основана на модели взаимодействия «команда-ответ». Перед передачей или приемом данных хост-контроллер должен отправить соответствующую команду по линии CMD. По этой же линии от SD-карты должен прийти ответ, после которого может быть осуществлено требуемое действие. Стандарт SD поддерживает присутствие нескольких ведомых на шине, в таком случае хост-контроллер может посылать команды широковещательно. Команда имеет четкую структуру, состоящую из 48 бит: 1 стартовый бит, 1 бит передачи (установлен в 1), 6 бит для индекса команды, 32 бита для аргумента, 7 бит для контрольной суммы и 1 стоповый бит. Ответ может иметь такую же 48-битную структуру (в этом случае бит передачи установлен в 0) или состоять из 136 битов (т. н. формат длинного ответа): 1 стартовый бит, 1 бит передачи (установлен в 0), 6 зарезервированных битов, 127 битов содержимого регистров CID (Card Identifiction Register) или CSD (Card Specific Data Register) и контрольной суммы, 1 стоповый бит.

В начале работы с картой хост-контроллер перезагружает карту с помощью команд GO_IDLE_STATE (CMD0) и IO_RW_DIRECT (CMD52) . Полный список команд с описанием можно найти в (приложение A). После перезагрузки карта восстановит свои настройки по умолчанию, и ее адрес будет равен RCA = 0x0001. Если к хосту подключено несколько карт, то с помощью команды SET_RELATIVE_ADDR (CMD3) он задает каждой карте собственный адрес. Также в начале работы выполняется проверка поданного на карту напряжения. Напряжение карты должно быть в строго установленном диапазоне от 2.7 до 3.6 В. В связи с этим хост-контроллер с помощью команды SEND_OP_COND (CMD1 или ACMD41 ) обязан узнать текущее напряжение на карте и прекратить с ней работу, если оно не входит в требуемый диапазон. Таков общий принцип инициализации карты, для выполнения которой, в зависимости от типа карты (MMC, SD, SD I/O), могут использоваться другие команды и выполняться дополнительные шаги, поэтому при реализации низкоуровневого интерфейса нужно внимательно прочитать документацию на карту и изучить команды CMD.

Во время записи хост передает карте один или несколько блоков, используя команду WRITE_BLOCK (CMD24) или WRITE_MULTIPLE_BLOCK (CMD25) , соответственно, при этом в конце каждого блока хост записывает контрольную сумму. Карта, запись данных для которой разрешена, всегда будет в состоянии принять блок(и), но если контрольная сумма не совпадет, то карта сообщит об ошибке и не запишет текущий блок в свою память, а в случае пакетной передачи следующие блоки будут проигнорированы.

Передать информацию хосту, то есть выполнить чтение, также можно одним блоком с помощью команды READ_SINGLE_BLOCK (CMD17) или пакетом из нескольких блоков с помощью команды READ_MULTIPLE_BLOCK (CMD18) . В случае пакетной передачи хост может прервать чтение в любое время, отправив команду STOP_TRANSMISSION (CMD12) . Если в ходе передачи нескольких блоков внутренний контроллер карты зафиксирует ошибку, то он остановит передачу данных хост-контроллеру, но оставит карту в режиме передачи данных. В таком случае хосту придется принудительно завершить чтение с помощью команды CMD12 , при этом в ответе на эту команду карта сообщит об ошибке чтения.

Организация правильной работы шины SD является достаточно трудоемким процессом, поскольку помимо общих ситуаций, описанных выше, необходимо предусматривать различные нюансы в поведении карты и реализовывать дополнительные обработчики ошибок. Поэтому наиболее рациональным решением будет использование специальных библиотек, позволяющих разработчику не вдаваться в подробности передачи данных на аппаратном уровне и существенно сократить время разработки. Одной из таких библиотек, о которой пойдет речь ниже, является библиотека-драйвер stm324xg_eval_sdio_sd для популярных микроконтроллеров , позволяющая существенно упростить работу с модулем SDIO, предназначенным для взаимодействия с SD-картами.

Драйвер stm324xg_eval_sdio_sd

Этот драйвер представляет собой библиотеку функций, с помощью которых можно реализовать высокоуровневый интерфейс для обмена данными с SD-картой. Драйвер поставляется для работы с отладочной платой STM324VG (UtilitiesSTM32_EVALSTM3240_41_G_EVAL), но после изменения функций, связывающих эту библиотеку с низкоуровневым интерфейсом SDIO он может функционировать со многими микроконтроллерами семейства STM32, в составе которых имеется модуль SDIO. Из предыдущего предложения следует, что к проекту должны быть подключены файлы из стандартной библиотеки Standard Peripheral Library , обеспечивающие функционирование модуля SDIO на низком уровне. Например, для микроконтроллеров серии STM32F4xx это будут файлы stm32f4xx_sdio.c и stm32f4xx_sdio.h .

Перед использованием функций драйвера программист должен связать этот драйвер с аппаратной частью, то есть настроить линии модуля SDIO. Для этого ему нужно в основном файле своей программы main.c создать функции SD_LowLevel_Init() (для включения модуля SDIO) и SD_LowLevel_DeInit() (для отключения модуля SDIO), в которых необходимо выполнить конфигурирование этих линий. Если программист желает использовать модуль прямого доступа к памяти для увеличения скорости работы с SD-картой, то ему также нужно будет создать функции SD_LowLevel_DMA_TxConfig() и SD_LowLevel_DMA_RxConfig() , отвечающие за передачу и прием данных с помощью модуля ПДП. В качестве примера инициализации четырех указанных функций можно взять код, имеющийся в файле stm324xg_eval.c из (UtilitiesSTM32_EVALSTM3240_41_G_EVAL).

Теперь рассмотрим основные функции для работы с SD-картой, предоставляемые этим драйвером. Для того, чтобы инициализировать карту, нужно вызвать функцию SD_Init() , которая настраивает модуль SDIO, обращаясь к SD_LowLevel_Init() , проверяет тип SD-карты, получает служебную информацию из регистров CID и CSD, задает скорость передачи данных (по умолчанию 24 МГц) и устанавливает ширину шины (4 бита). Прочитать данные, полученные с карты, можно с помощью функций SD_ReadBlock() (для чтения одного блока) и SD_ReadMultiBlocks() (для чтения нескольких блоков). Чтобы записать данные на карту, используют функции SD_WriteBlock() (для записи одного блока) и SD_WriteMultiBlocks() (для записи нескольких блоков). Эти функции чтения и записи принимают три аргумента: buffer (переменная-буфер, в которую должны помещаться данные для чтения и записи), address (адрес ячейки памяти SD-карты) и block_size (всегда 512, поскольку эти функции работают только с блоками длинной 512 байтов). Для стирания определенной области памяти карты имеется функция SD_Erase() . В качестве аргументов она принимает startaddr и endaddr. В первом указывается адрес ячейки памяти, с которой начнется стирание, а во втором - адрес ячейки, на которой стирание будет завершено.

Передача данных между модулем SDIO и памятью микроконтроллера может осуществляться как обычным путем через центральный процессор, так и через блок прямого доступа к памяти. Для выбора необходимого режима нужно в файле stm324xg_eval_sdio_sd.h раскомментировать либо строчку #define SD_POLLING_MODE (обычный режим), либо строчку #define SD_DMA_MODE (режим ПДП). После любой операции записи или чтения необходимо с помощью функции SD_GetStatus() проверять, завершила ли карта текущую операцию, и готова ли она к приему или отправке новых данных. Если эта функция вернула значение SD_TRANSFER_OK, то передача завершена успешно, возврат SD_TRANSFER_BUSY означает, что канал передачи занят, а возврат SD_TRANSFER_ERROR сообщает об ошибке передачи. Все эти значения определены в структуре SDTransferState , записанной в stm324xg_eval_sdio_sd.h . Если передача информации выполнялась через блок ПДП, то дополнительно нужно проверять, завершил ли контроллер ПДП все операции по пересылке данных. Это делается с помощью функции SD_ReadWaitOperation() . Также стоит отметить, что передача через блок ПДП завершается прерыванием, поэтому программисту необходимо организовать вызов функции SD_ProcessIRQ() в обработчике прерываний модуля SDIO SDIO_IRQHandler() и вызов функции SD_ProcessDMAIRQ() в обработчике прерываний DMA2 DMA2_Streamx_IRQHandler() .

Для лучшего понимания принципа работы драйвера stm324xg_eval_sdio_sd можно воспользоваться рабочим примером из папки SDIOSDIO_uSDCard (ProjectSTM32F4xx_StdPeriph_ExamplesSDIO). С помощью этой тестовой программы можно выполнить стирание определенной области памяти карты, запись данных по определенному адресу, чтение данных по этому же адресу с последующим сравнением отправленной и принятой информации. Идентичность буфера приема и буфера отправки является свидетельством того, что модуль SDIO, шина передачи информации и SD-карта функционируют нормально.

Таким образом, можно сказать, что SD-карты являются достойными конкурентами USB флеш-накопителей, когда речь заходит о проектировании малых встраиваемых систем, требующих хранения больших объемов данных. Передавать информацию с карты и на карту можно с помощью интерфейса SPI или по шине SD, которая разработана для этих целей и обеспечивает высокую скорость передачи. Реализация связи с картой существенно упрощается при использовании специальных драйверов, облегчающих работу с аппаратной частью и предлагающих программистам простые в использовании функции. Но, к сожалению, записанные в произвольном порядке данные не будут восприняты какой-либо операционной системой, например, Windows, поэтому в следующей части будет рассмотрен порядок работы с SD-картой, имеющей файловую систему FAT.

Список источников